هوش مصنوعی

November 23, 2025
16:30 یکشنبه، 2ام آذرماه 1404
کد خبر: 206734

مدل‌های زبانی می‌توانند با داده‌های صوتی و حرکتی تشخیص دهند چه کار می‌کنید

منبع: دیجیاتو

مدل‌های LLM با داده‌های صوتی و حرکتی می‌توانند تحلیل بهتری از فعالیت‌های کاربر داشته باشند.

اپل تحقیق جدیدی منتشر کرده که نشان می‌دهد مدل‌های زبانی بزرگ (LLM) چگونه می‌توانند داده‌های صوتی و حرکتی را تحلیل کنند تا دید بهتری از فعالیت‌های کاربر به دست آورند.

یک مقاله جدید با عنوان «استفاده از LLMها برای ادغام چند حسی سنسورها در تشخیص فعالیت» اطلاعاتی درباره اینکه اپل چگونه ممکن است از تحلیل LLM در کنار داده‌های سنتی سنسورها برای درک دقیق‌تر فعالیت کاربر استفاده کند، ارائه می‌دهد. به گفته محققان، این روش پتانسیل بالایی برای افزایش دقت تحلیل فعالیت‌ها حتی در شرایطی که داده‌های کافی از سنسور موجود نیست، دارد.

مدل‌های زبانی بزرگ می‌توانند با داده‌های کمتر نوع فعالیت کاربر را مشخص کنند
در این تحقیق مشخص شد که مدل‌های زبانی بزرگ توانایی بسیار قابل‌توجهی در استنباط فعالیت‌های کاربر از طریق سیگنال‌های صوتی و حرکتی دارند، حتی اگر به‌صورت خاص برای این کار آموزش ندیده باشند. همچنین وقتی تنها یک مثال به آنها داده می‌شود، دقتشان حتی بیشتر هم می‌شود.

یک تفاوت مهم این است که در این مطالعه، LLM خود فایل صوتی واقعی را دریافت نکرده بود، بلکه توضیحات کوتاه متنی تولیدشده توسط مدل‌های صوتی و یک مدل حرکتی مبتنی بر IMU به آن داده شد. IMU یا دستگاه سنجش لختی (اینرسی) حرکت را از طریق داده‌های شتاب‌سنج و ژیروسکوپ دنبال می‌کند.

در این مقاله، محققان توضیح داده‌اند که از Ego4D (یک مجموعه داده عظیم از رسانه‌هایی که با دیدگاه اول‌شخص ضبط شده) استفاده کرده‌اند. این داده‌ها شامل هزاران ساعت اطلاعات از محیط‌ها و موقعیت‌های واقعی از کارهای خانه گرفته تا فعالیت‌های فضای باز هستند.

محققان داده‌های صوتی و حرکتی را از طریق مدل‌های کوچک‌تر عبور دادند که زیرنویس متنی و پیش‌بینی کلاس‌ها را تولید می‌کردند، سپس این خروجی‌ها را به مدل‌های مختلف LLM مانند جمینای ۲.۵ پرو و Qwen-32B دادند تا ببینند چقدر می‌توانند فعالیت‌ها را شناسایی کنند.

اپل عملکرد این مدل‌ها را در دو وضعیت مختلف مقایسه کرد؛ یکی زمانی که لیست ۱۲ فعالیت ممکن برای انتخاب در اختیارشان قرار گرفت و دیگری زمانی که هیچ گزینه‌ای داده نشد.

محققان در پایان اشاره می‌کنند که نتایج این مطالعه اطلاعات جالبی درباره نحوه ترکیب چند مدل برای تحلیل داده‌های فعالیت و سلامت ارائه می‌دهد، به‌ویژه در مواردی که داده‌های خام سنسورها به تنهایی کافی نیستند تا تصویر واضحی از فعالیت کاربر ارائه دهند.

  • مشترک شوید!

    برای عضویت در خبرنامه روزانه ایستنا؛ نشانی پست الکترونیکی خود را در فرم زیر وارد نمایید. پس از آن به صورت خودکار ایمیلی به نشانی شما ارسال میشود، برای تکمیل عضویت خود و تایید صحت نشانی پست الکترونیک وارد شده، می بایست بر روی لینکی که در این ایمیل برایتان ارسال شده کلیک نمایید. پس از آن پیامی مبنی بر تکمیل عضویت شما در خبرنامه روزانه ایستنا نمایش داده میشود.

    با عضویت در خبرنامه پیامکی آژانس خبری فناوری اطلاعات و ارتباطات (ایستنا) به طور روزانه آخرین اخبار، گزارشها و تحلیل های حوزه فناوری اطلاعات و ارتباطات را در هر لحظه و هر کجا از طریق پیام کوتاه دریافت خواهید کرد. برای عضویت در این خبرنامه، مشترکین سیمکارت های همراه اول لازم است عبارت 150 را به شماره 201464 و مشترکین سیمکارت های ایرانسل عبارت ozv ictn را به شماره ۸۲۸۲ ارسال کنند. دریافت موفق هر بسته خبری که محتوی پیامکی با حجم ۵پیامک بوده و ۴ تا ۶ عنوان خبری را شامل میشود، ۳۵۰ ریال برای مشترک هزینه در بردارد که در صورتحساب ارسالی از سوی اپراتور مربوطه محاسبه و از اعتبار موجود در حساب مشترکین سیمکارت های دائمی کسر میشود. بخشی از این درآمد این سرویس از سوی اپراتور میزبان شما به ایستنا پرداخت میشود. مشترکین در هر لحظه براساس دستورالعمل اعلامی در پایان هر بسته خبری قادر خواهند بود اشتراک خود را در این سرویس لغو کنند. هزینه دریافت هر بسته خبری برای مشترکین صرفا ۳۵۰ ریال خواهد بود و این هزینه برای مشترکین در حال استفاده از خدمات رومینگ بین الملل اپراتورهای همراه اول و ایرانسل هم هزینه اضافه ای در بر نخواهد داشت.